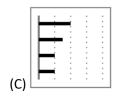
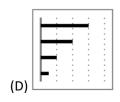
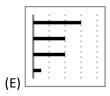

## KSF 2022 - Student (S)


## 3 points problems


1. On Henry's smartphone, the diagram shows how much time he spent last week on each of his apps. The apps are ordered from greatest to least time spent. This week, he spent exactly the same amount of time as last week on two of his apps, but only half as much time on the other two. Which of the diagrams below cannot be the diagram for this week?







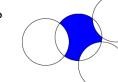







2. How many positive three-digit integers are divisible by 13?

- (A) 68
- (B) 69
- (C)70
- (D) 76
- (E) 77


3. Bella is older than Charlie and younger than Lily. Teddy is older than Bella. Which two people could be the same age?

- (A)Charlie and Teddy (B) Teddy and Lily
- (C) Lily and Charlie
- (D) Bella and Lily
- (E) Teddy and Bella

4. The product of the digits of a 10-digit integer is 15. What is the sum of the digits of this number?

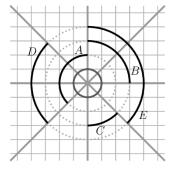
- (A) 8
- (B) 12
- (C) 15
- (D) 16
- (E) 20

5. Four circles, each of radius 1, intersect as shown. What is the perimeter of the shaded region?



- (A)  $\pi$  (B)  $\frac{\pi}{3}$  (C)  $\frac{3\pi}{2}$  (D)  $2\pi$  (E) Some number between  $\frac{3\pi}{2}$  and  $2\pi$

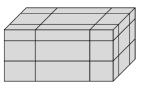
6. David writes, in increasing order, all the integers from 2 to 2022 which use only 0s and 2s. What is the number in the middle of his list?


- (A) 200
- (B) 220
- (C) 222
- (D) 2000
- (E) 2002

**7.** How many real solutions does the equation  $(x-2)^2 + (x+2)^2 = 0$  have?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E)4

8. Four lines intersect forming eight equal angles. Which black arc has the same length as the small grey circle?

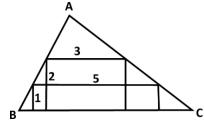

- (A) A
- (B) B
- (C) C
- (D) D
- (E) E



| <b>9.</b> Let <i>a, b, c</i> be no definitely true?                         | n-zero numbers. <sup>-</sup>        | Γhe numbers                                     | $-2a^4b^3c^2$ and 3                | $a^3b^5c^{-4}$ have the sar                                                        | me sign. Which c | of the following is |
|-----------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|------------------|---------------------|
| (A) $ab>0$                                                                  | (B) $b < 0$                         | (                                               | C) $c > 0$                         | (D) $bc>0$                                                                         | (E) a            | <0                  |
| <b>10.</b> Mike has mark as shown in the d tween <i>B</i> and <i>D</i> , 18 | iagram. The dista                   | nce between                                     | A and C is 12 c                    |                                                                                    | B C              | <i>D</i>            |
| (A) 15 cm                                                                   | (B) 12 cm                           | (                                               | C) 18 cm                           | (D) 6 cm                                                                           | (E) 9            | cm                  |
| 4 points problems                                                           | 5                                   |                                                 |                                    |                                                                                    |                  |                     |
|                                                                             |                                     |                                                 |                                    | tices that all the digime all the digits on                                        | 1191             | 1 8 7 6 m           |
| (A) 0.006 m <sup>3</sup>                                                    | (B) 0.034 m                         | n <sup>3</sup> (                                | C) 0.086 m <sup>3</sup>            | (D) 0.137 m <sup>3</sup>                                                           | (E) 1.           | 048 m³              |
| vertices of the sha                                                         | aded quadrilatera                   | are the midp                                    | ooints of the sid                  | equal rectangles, as<br>es of the two squar<br>d part of the large s<br>(E) 24     | es. The area     |                     |
| 13. What is the gro                                                         |                                     |                                                 |                                    |                                                                                    |                  |                     |
| (A) 2 <sup>2021</sup>                                                       | (B) 1                               | (                                               | C) 2                               | (D) 6                                                                              | (E) 12           | 2                   |
| electricity power p                                                         | olants in some of sited and any cit | the cities. Ead<br>es connected<br>to be built? | ch power plant                     | The Government was transported to the can provide enough a single road. What (D) 6 | electricity for  |                     |
|                                                                             |                                     |                                                 |                                    | d the shape shown                                                                  |                  |                     |
| (A)                                                                         | (B)                                 |                                                 | C)                                 | (D)                                                                                | (E)              |                     |
| body. In the first re                                                       | ound, players are the second round  | organised rar<br>, there are tv                 | ndomly into four<br>vo matches and | will beat everyone<br>pairs, and the winn<br>the winners of the                    | er of each matcl | n proceeds to the   |

(A) 1 (B)  $\frac{1}{2}$  (C)  $\frac{2}{7}$  (D)  $\frac{3}{7}$  (E)  $\frac{4}{7}$ 

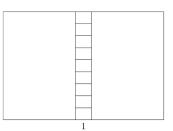
17. A cuboid of surface area S is cut by six planes as shown. Each plane is parallel to a face, but its distance from the face is random. Now the cuboid is separated in 27 smaller parts. What, in terms of S, is the total surface area of all 27 smaller parts?




- (A) 2S
- (B)  $\frac{5}{2}$ S
- (C)3S
- (D) 4S
- (E) 6S

18. Five numbers have a mean of 24. The mean of the three smallest numbers is 19 and the mean of the three largest numbers is 28. What is the median of the five numbers?

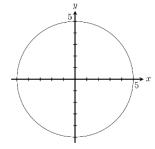
- (A) 20
- (B) 21
- (C) 22
- (D) 23
- (E) 24


19. Two rectangles are inscribed inside a triangle ABC. The dimensions of the rectangles are 1 x 5 and 2 x 3, respectively, as shown. What is the height of the triangle with base BC?



- (A) 3

- (B)  $\frac{7}{2}$  (C)  $\frac{8}{3}$  (D)  $\frac{16}{5}$  (E) 6

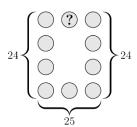

20. A rectangle is divided into 11 smaller rectangles, as shown in the diagram. All 11 rectangles are similar to the original large rectangle. The orientation of the smallest rectangles is the same as the largest. The length of the base of the smallest rectangle is 1. What is the perimeter of the large rectangle?



- (A) 20
- (B) 24
- (C) 27
- (D) 30
- (E) 36

## 5 points problems

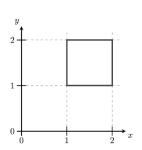
**21.** A circle with centre (0,0) has radius 5. At how many points on the perimeter of the circle are both coordinates integers?

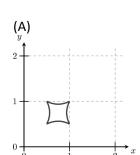


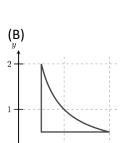

- (A) 5
- (B) 8
- (C) 12
- (D) 16
- (E) 20

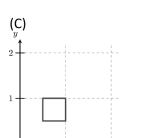
22. How many positive three-digit integers are there that are equal to five times the product of their digits?

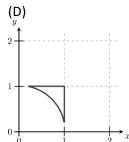
- (A) 1
- (B) 2
- (C)3
- (D) 4
- (E)5

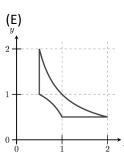

23. The numbers 1 to 10 are placed, once each, in the circles of the figure shown. The sum of the numbers in the left column is 24; the sum of the numbers in the right column is also 24 and the sum of the numbers in the bottom row is 25. What number is in the circle containing the  $\,^{24}$ question mark?





- (A) 2
- (B) 4
- (C)5
- (D) 6
- (E) none of the previous


**24.** A square lies in a coordinate system as shown. Each point (x,y) on the square is moved


to  $\left(\frac{1}{x}, \frac{1}{y}\right)$ . What will the resulting figure look like?















25. The vertices of a 20-gon are numbered from 1 to 20 in such a way that the numbers of adjacent vertices differ by either 1 or 2. The sides of the 20-gon whose ends differ by only 1 are colored red. How many red sides are there?

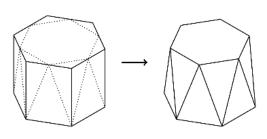
(A) 1

- (B)2
- (C)5
- (D) 10
- (E) there are multiple possibilities
- **26.** Two circles cut a rectangle *AFMG*, as shown. The line segments outside the circles have length AB=8, CD=26, EF=22, GH=12 e JK = 24. What is the length of LM?



(A) 14

- (B) 15
- (C) 16
- (D) 17
- (E) 18
- **27.** Let N be a positive integer. How many integers are there between  $\sqrt{N^2 + N + 1}$  and  $\sqrt{9N^2 + N + 1}$ ?


(A) N+1

- (B) 2N-1
- (C) 2N
- (D) 2N+1
- (E) 3N
- **28.** In a sequence, the first term,  $a_1$  is between 0 and 1. For all  $n \ge 1$ ,  $a_{2n} = a_2 \cdot a_n + 1$  and  $a_{2n+1} = a_2 \cdot a_n 2$ . Given that  $a_7 = 2$ , what is the value of  $a_2$ ?

(A) Equal to  $a_1$ 

- (B)2
- (C)3
- (D) 4
- (E)5

29. A regular hexagonal prism has its top corners shaved off, as shown. The top face becomes a smaller regular hexagon and the 6 rectangular faces around the middle become 12 isosceles triangles of two different sizes. What fraction of the volume of the original prism has been lost?



- (A)  $\frac{1}{12}$  (B)  $\frac{1}{6}$  (C)  $\frac{1}{4\sqrt{3}}$  (D)  $\frac{1}{6\sqrt{2}}$  (E)  $\frac{1}{6\sqrt{3}}$
- 30. A football match between teams from North Berracan and South Berracan is played in a stadium that has a rectangular array of seats for the spectators. There are 11 North Berracan supporters in each row, and 14 South Berracan supporters in each column. This leaves 17 empty seats. What is the smallest possible number of seats in the stadium?

(A) 500

- (B) 660
- (C) 690
- (D) 840
- (E) 994